Enforcing View-Consistency in Class-Agnostic 3D Segmentation Fields

Corentin Dumery, Aoxiang Fan, Ren Li, Nicolas Talabot, Pascal Fua

OpenSUN3D

4th Workshop on Open-World 3D Scene Understanding with Foundation Models

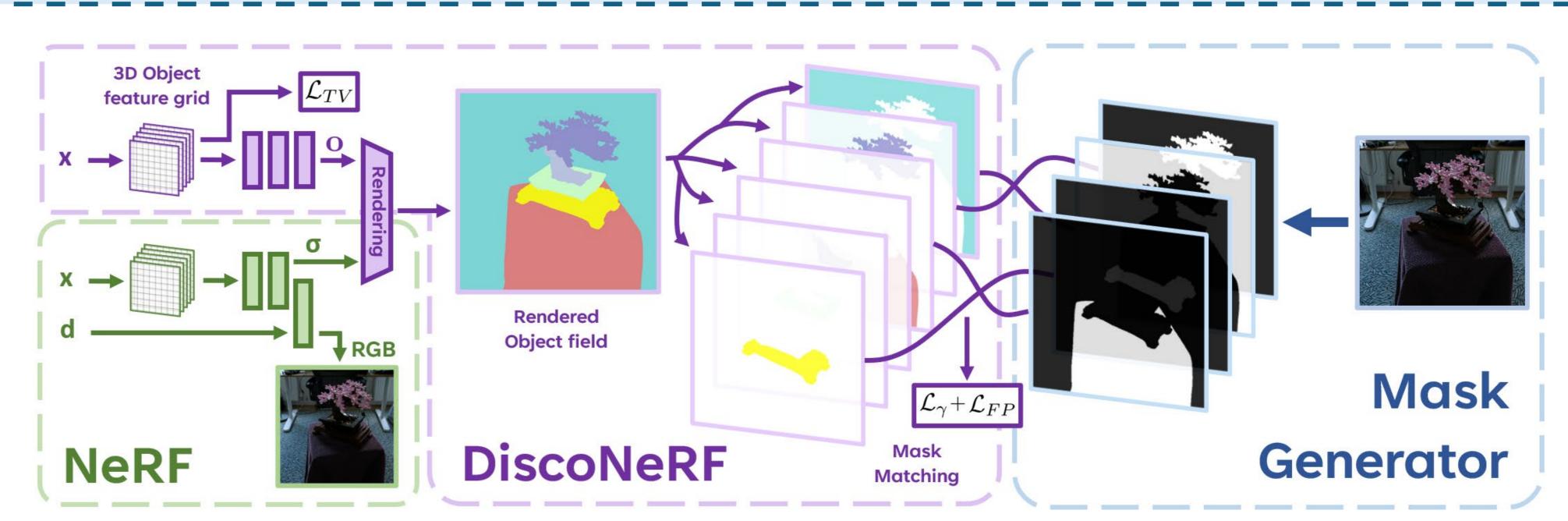
1 Problem Statement

- → Given as input a set of class-agnostic 2D masks with little consistency across views, we aim to learn a meaningful 3D object field that segments the different instances in the scene
- → Existing methods either assume predefined classes or only learn feature fields that require clustering as post-processing

2 Method

- Augment NeRF with a highdimensional object field, which is rendered similarly to color
- Each channel learns a **single** object with a per-pixel probability

$$egin{aligned} lpha(O_n, M_m) &= rac{\sum\limits_{i,j} \mathbf{min}(O_{n,i,j}, M_{m,i,j})}{\sum\limits_{i,j} \mathbf{max}(O_{n,i,j}, M_{m,i,j})} \ \mathcal{L}_{\gamma} &= rac{1}{K} \sum\limits_{m=1}^{K} \|M_m - O_{\gamma(m)}\|_2^2 \,, \ \mathcal{L}_{FP} &= rac{1}{K} \sum\limits_{m=1}^{K} \sum\limits_{n
eq \gamma(m)} \|M_m * O_n\|_2^2 \,, \ \mathcal{L}_{TV} &= \sum \|h_i - h_j\|_2^2 \end{aligned}$$

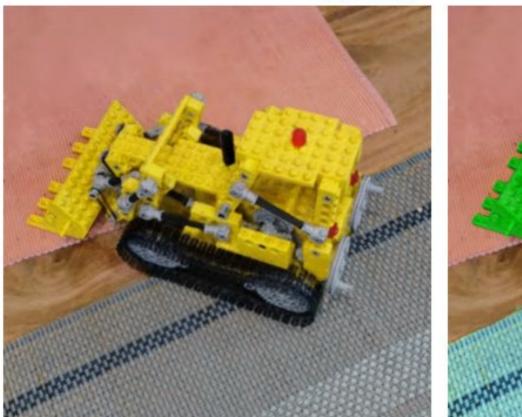


- Find the best matching γ that minimizes a generalized IoU α between 2D masks and object field channels
- Supervise object field with a matching loss and a false positives loss
- Regularize the object field to enforce spatial consistency with Total
 Variation loss on the object field hash grid

3 Results

 $i,j{\in}\mathcal{N}$

(a) Object removal



(b) Color editing

(c) Composition

- Class-agnostic segmentations on Mip-NeRF360
- Object field can be used to condition rendering
- This allows a wide range of editing operations

	DFFv2	Instance- NeRF	Panoptic Lifting	PL+SAM	SAM (2D)	Ours
IoU (%)	65.60	31.71	29.33	64.12	76.14	79.24
BD (%)	74.57	53.75	55.41	78.32	87.12	87.51
SBD (%)	73.82	44.19	41.73	72.90	83.39	85.34

- → The final segmentation does not require additional clustering
- → It natively provides a confidence estimates

